Calcaneofibular ligament repair in lateral ankle ligament surgery: Implications for evolving arthroscopic techniques
ESSKA Academy. Hunt K. May 11, 2018; 218057; FP32-1948
Kenneth Hunt
Kenneth Hunt
Login now to access Regular content available to all registered users.

You can access free non-premium educational content on the ESSKA Academy Portal by registering for free as 'ESSKA Academy User' here
Discussion Forum (0)
Rate & Comment (0)
Objectives: Lateral ankle sprain is the most common athletic injury. Many athletes with severe ankle sprains will develop chronic ankle instability, and possibly require surgical repair in order to restore function. The standard for lateral ligament stabilization is direct repair of the ATFL by open or arthroscopic technique. However, implications and necessity of repairing the CFL are not well understood. The purpose of this study was to assess the impact of repairing the ATFL alone compared to repairing both the ATFL and CFL, in a biomechanical cadaver model. We hypothesized that repairing the CFL will add significant ankle and subtalar joint stability during weight-bearing ankle inversion compared to ATFL repair alone.

Methods: Ten matched pairs of fresh frozen human cadaveric ankles were dissected to expose intact ATFL and CFL. Ankles were mounted to an Instron at 20° plantar flexion and 15° of internal rotation. Each ankle was loaded to body weight and then inverted from 0 to 20° for three cycles; torque was recorded and stiffness was calculated. Ankles then underwent sectioning of ATFL and CFL and were randomly assigned to ATFL only repair using two arthroscopic Broström all-soft anchors, or combined ATFL and CFL repair. Testing was repeated after repair to 20° of inversion, then load-to-failure (LTF).

Results: The predominant mode of failure (17/20) after repair was at the ligament/suture interface - there were no occurrences of anchor pull-out. There was a significant increase in stiffness in combined repairs, and minimal increase in single repairs, compared to the complete injury condition. The CFL failed at lower torque (p=.017) and rotation (p=.01) than the ATFL in combined repairs. However, there was no difference between groups in inversion degrees or torque at failure of the ATFL during LTF. There was a strong correlation (r=.74) with intact stiffness and stiffness after repair, across both groups, and a strong correlation (r=.77) with intact stiffness and ATFL torque in LTF testing, across both groups.

Conclusions: We found a greater increase in stiffness following combined ATFL and CFL repair compared to ATFL repair alone. This added stability is likely due to complimentary contributions of the CFL, not augmented strength of the ATFL, since ATFL rotation and torque at LTF were unaffected by CFL repair. Intact specimen stiffness correlated strongly with both stiffness after repair, and LTF torque of ATFL. Thus, a patient's inherent laxity or stiffness is likely a meaningful contributor to strength after repair. The CFL fails before the ATFL, potentially indicating its vulnerability immediately following repair. As arthroscopic
techniques and outcomes continue to evolve and improve, restoring the CFL likely plays a role in lateral ligament repair. However, protection from inversion motion during recovery is critical to mitigate risk of ligament stretching and repair failure.

ankle sprain, ankle instability calcaneofibular ligament, arthroscopic brostrom
Code of conduct/disclaimer available in General Terms & Conditions
Anonymous User Privacy Preferences

Strictly Necessary Cookies (Always Active)

MULTILEARNING platforms and tools hereinafter referred as “MLG SOFTWARE” are provided to you as pure educational platforms/services requiring cookies to operate. In the case of the MLG SOFTWARE, cookies are essential for the Platform to function properly for the provision of education. If these cookies are disabled, a large subset of the functionality provided by the Platform will either be unavailable or cease to work as expected. The MLG SOFTWARE do not capture non-essential activities such as menu items and listings you click on or pages viewed.

Performance Cookies

Performance cookies are used to analyse how visitors use a website in order to provide a better user experience.

Google Analytics is used for user behavior tracking/reporting. Google Analytics works in parallel and independently from MLG’s features. Google Analytics relies on cookies and these cookies can be used by Google to track users across different platforms/services.

Save Settings